Qe+t Phrr ke Frerk

Fi(+1: ks Gk+1, k are the transition matrices;
Px+1lk+1, Pk+1]k Qo '
Ry 41 are the covariant matrices;
Ki+1 is the weighing matrix;

Hy 41 is the measurement matrix;

A is the thermal conductivity;
o is the thermal diffusivity;

I is the unit matrix;

T is the time;

h is the grid interval,
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OPTIMAL CONTROL OF THE PROCESS OF HEAT
TRANSMISSION BETWEEN BODIES IN CONTACT

V. 8. Kolesov ' UDC 536.24, 02

Problems of optimal fast-response control of the process of heat transmission between bodies
in contact are considered under constraints on the thermoelastic stresses. Analytic expres-
sions are obtained for the control function — the thermal contact resistance,

The process of heat transmission between bodies in contact is characterized by the presence of a ther-
mal resistance in the contact. It is due to the natural roughness of the surfaces in contact and can result in a
substantial redistribution of the temperature fields in the materials making contact [1]. The influence of the
thermal resistance in the contact on the heat transmission process is twofold: Onthe one hand, it diminishes
the heat flux and therefore results in an increase in the lifetime of the process, and on the other hand, it re-
duces the temperature drop in the bodies making contact, i.e., results in a diminution in the thermal stress
level therein, The dual nature of the influence of the thermal contact resistance on the heat-transmission
process permits formulation of an optimal control problem: Find that control (the time dependence of the ther-
mal resistance) which will result in a minimum time in the attainment of the desired result (the target func-
tion) and the temperature stresses will hence not exceed a certain quantity governing the strength of the ma-
terial. The target function can be quite different. For example, the deviation of the mean body temperature
from a previously assigned value will not exceed a certain quantity; a definite temperature level will be
achieved at a fixed point, etc. Its selection is dictated by specific circumstances. Such problems originate
in the design and designation of the exploitational modes of thermal power plants. '

A significant number of investigations havebeen devoted to methods of solving problems on the optimal
control of heating solids. The approach developed in [2, 3], whose crux is that compliance with the equality
under conditions constraining the thermal stresses is considered equivalent to the condition of realizing an
optimal thermal mode, is used below.

1, Let us agsume the process of heat transmission between two halfspaces, This problem can be use-
ful if it is necessary to check the process only at times close to the initial time, or when the items making
contact are sufficiently massive.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 4, pp. 718-723, October, 1978, Original
article submitted October 3, 1977,
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Let the halfspace x > 0 have the temperature T, and at the time t = 0 be in contact with the halfspace,
X < 0 which has a zero temperature. Find that heat-transmission mode for which the value of the temperature
at some point x = I will reach the value T*T; > T*> T(/2) in 2 minimum time and the thermoelastic stresses
will hence not exceed an admissible quantity o,

The heat-conduction problem is formulated as follows: Find the solution of the equations

02T, 1 9T, 2T, 1 T
—_—= e, x>0, —2 = 2
e x ot w <O (1.1
satisfying the boundary conditions
0T, oT,
TI::TO’ TZ:OfOI t:01 TR
dx Ox 1.2)
oT 1
A2t = — (T —T,) for x=0.
F™ R (Ty—T))

Let us first note one physically obvious equality (its formal proof is elementary), which will be useful
later:
Ty(x, 8) + To(—x, 1) =T, : (1.3)
Furthermore, according to [4], the thermoelastic stresses in a halfspace with a uniform temperature
distribution have the form

1.4
Oge = 0, Oy =0y = — I“ET ) 1.9
—_—
Therefore, the maximum value of the tensile stresses is achieved in the right halfspace and equals
gmex — __ aE (Ty—T,) ' (1.5)
l —w xe=-0

Examination of the problem of optimal control of the heat-transmission process is meaningful only if the
corresponding thermoelastic stresses exceed an allowable quantity under ideal thermal contact between the
touching bodies. As follows from (1.2) and (1.3), a constant temperature Ty =T, = Ty and Grzr;ax =aETy/2(1 —
v) are established on the boundary under ideal thermal contact. Therefore, for aETy/2(1 — v) < o ideal heat
exchange is the optimal heat-transmission mode. In this case the heat-conduction problem is formulated thus:

02T, 1 97T,

A VIR Tiltmo = Tpr Tilzmo =

The solution of this problem is known [5]:

L 1.6)

T X
T, = -0
1= {H‘D( SVt )}

where

x

o= o= feva

0
The time needed to reach the temperature T* at the point x = is determined from the equation

T*zﬂ_{1+®( L }
2 2Vt

Let us consider the situation when a ET/2(1 — v) > 0. Following [2, 3], let us assume that the optimal
heat-transmission mode is realized under the condition of the equality Grzxéax = 0, is always satisfied at some
point of the halfspace, where this point can be variable in the general case, However, taking account of the
monotonity of the temperature change for the problem under investigation, it follows from (1.4) that the maxi-
mum tensile stress is always attained at the point x = +0, Therefore, under the assumption made is charac-
terized by the condition

G (l—v)
aE

Ty g=To— M

and the problem of determining the optimal mode of the heat-transmission process has the form

02T 1 or
ax; - T—aTi v Tilyeg =To» Ty = To—

Gy (1 — ) .

o @n
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Let us prove that this thermal mode is actually optimal, The proof is based on the following lemma: Let
functions u;(x, t) be solutions of the problems

0%,

ox2

If o1 (t) = ¢y (t), then uy(x, t) = uy(x, t).

- —"aft— (0, 10 i = 1,9), wl,_y = tto, ty]_y = 9; (2).

Now, let R(t) be some control and T ;(x, t, R) be the thermal mode it determines. Let ¢(t, R) = T;(0, t,
R). If it turns out that for R, (t) and R,(t) the corresponding functions @1 (t, Ry) and ¢,(t, R,) are related by the
inequality ¢; = ¢, then by virtue of the lemma Ty (x, t, R) = Ty (x, t, R,). Therefore, the control will be
optimal if the function Ty (x, t) is the greatest possible for x = 0, But the largest possible value is M, There-
fore, the thermal mode it determines is optimal.

The solution of problem (1.7) is analogous to (1.6):

T:T.__U"(l—v) *( d ) =°'o(1—“’) % -
tere gD 2V;7’T2 aE (D*(QVZ?)’

7

where
O* (x) =1—D (x).
We find control function R (t) realizing the optimal control from boundary condition (1.2)

GETO—' 20'0(1 -—'V) 2]/’;‘?
Ao (1 —w)

R{)=

The time t* to achieve the desired result is the solution of the equation

I r oo(l—v)(D*( I )

aE oV ui

2, Let us examine the more physical situation when two plates of identical thickness 27 are in con-
tact, where one has the initial temperature T while the temperature of the other is zero and the surfaces not
in contact are heat insulated. Let us find the optimal heat-transmission mode between the plates by consider-
ing the contact thermal resistance R (t) the control function, and the attainment of a certain temperature T* on
the heat-insulated surface of the "hot" plate in a minimum time as the target function, where Ty/2 < T*< T,

The temperature distribution in the plates is described by the solution of the problem

T, 1 a7, 0T, 1 0T,
= %1 ocxgo -2y 0;
xS e T T sr<
Ty=Ty Ty=0 fao t=0; T = 9Ty and @.1)
) ox ox
iT_‘ - _1._ (T'1 — TZJ for x=0; 0T, = 0T, ={).
Ox R 0% |y 0% |y——au

Equality (1.3) is evidently also valid for this case,

Let us analyze the nature of the thermal stress state of plates with an ideal thermal contact in order to
determine the condition under which the heat-transmission problem must be controlled by means of the ther-
mal resistance. The mathematical formulation of the heat-conduction problem for R = 0 is analogous to (1.6)
in conformity with (1.3), except the condition of no heat flux on the plate surfaces not in contact should be added.
It is shown in [4] that the stresses in a free plate having the temperature T, at the initial instant and then chang-
ing its magnitude to S; instantaneously on one surface, will reach the maximum value on the boundary x = 0 at
the time t = +0, where

omax — — oE (Sg— To)/(1 — ),
i.e., for the problem under consideration
omax — aETy/2 (1 — ).
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TABLE 1. Values Roots of (2, 4)

: \
m B m Bm H m B h m Brm
3
1 1,30310 5 8,50113 , 9 14,8517 ” 13 1 21,1567
) 3,70722 6 10,1184 10 16,4352 14 | 22,7339
3 5,28103 7 11,6808 11 18,0062 l 15 | 24,3049
4 6,93042 8 13,2805 I 12 19,5858 l 16 | 25,8803
) i
R
~
/£
12 \ P
08 \<
K 2 \\
i '\3\\ \
% L\ N
g o5 gz 48 ges T

Fig, 1. Graph of the optimal
control for different values of
the parameter y: 1) 0.2; 2) 0.3;
0.4; 3) 0.4; 4) 0.5,

Therefore, if aETy/2(1 — v) = 0y, then the heat-transmission mode at R = 0 is optimal, The solution of
the problem is hence easily obtained by the Fourier method [5].
Let oETy/2(1 — v) > 0. As before, we consider the optimal mode realized under the condition G;nax = 0.

Let us introduce the dimensionless coordinates £ = (x ~ })/l, T= 1t/12, The thermoelastic stresses in a free
plate due to the effect of a temperature varying only along the thickness will have the form [4]

1 1
E 1 3
Su=0, 0=y == [T (1 & (e,
1—w 2 2
-1 1
Since the value of T; — T, is maximal at the point £ = —1, then the maximal value of the thermal stress
is also achieved at £ =—1, Now, the problem to determine the optimal heat-transmission mode is formulated

thus
12,
PU __ U 0 tor v—0; 2.2)

o0&z ot

1

1

oU I 3 [ o, (1 — )

O 0 for =1y U+ fUd— 2 \evde = 2 =Y o o1,

3t ¢ Ut f T2 5 ST :
—1

¥ —1

where U =Ty — T
Its solution is easily constructed by using the Laplace integral transform method

o 2
oy (1 —v) [ 3 8 b) Bre "™ cos B E— 1) }
Ty= Ty 20 12V 9p (E—1)2— —— 2 )
1=ttt T F {2{ T E— 1P 5]+ Al o8 o5 2P, + 2PL sin 2B, — sin 26, @.3)

Here By, are positive roots of the equation
B cos 2B -+ 3sin2p — 2sin 2p = 0.

The values of the first 16 roots of this equation are given in the table.
ficiently accurately from the asymptotic formula

(2.4)

Subsequent roots can be calculated suf-

B = nim/2.
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We find the control function R(t) from the condition of contact heat exchange between the plates

ﬁ(1)=i§2“_(1+7[3 (——1:_—2_)_;_

o 2 2
v ﬁme_ﬂm'f cos 25," / [3 ﬁ?ne_ﬂm’l' sin 26," } 92 5
+2 n+='1‘ 2B, cos 2B,,, -+ 2P cos 2B,, — sin 2B,, ) ¥ | + et 2B, cOs 2B, + 2P, cos 2B, — sin 2B, )' (2.5)

where v = 20y(1 — v)/aET,.
Since solution (2.3) is valid only for t < t*¥, where t¥ is determined from the equality

T
Ty = 5 (2.6)
then (2.5) is also valid for t < t¥, If the desired result is not achieved during this time, then R = 0 should later
(t > t9 be taken as the optimal heat-transmission mode. Let us note that the condition for switching the control
(2.6) is equivalent to the equality R(f) = 0. This follows from (1. 3) and the condition of heat exchange between
plates.

Graphs of the control function ﬁ(T) are presented in the figure for different values of the parameter y. It
follows from the figure that the smaller the parameter v, i.e., the more the thermoelastic stresses in the plate
exceed the allowable magnitude under an ideal thermal contact, the longer the duration of the control,

- NOTATION

is the temperature;

is the heat-conduction coefficient;

is the coefficient of thermal diffusivity;
is the constant thermal resistance;

is the coefficient of linear expansion;
is the Young's modulus;

is the Poisson's ratio;

is the stress tensor component.
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